Randomization inference with general interference and censoring
نویسندگان
چکیده
منابع مشابه
Causal Inference with Interference
LAN LIU: Causal Inference with Interference (Under the direction of Dr. Michael G. Hudgens) Recently, increasing attention has focused on making causal inference when interference is possible, i.e., when the potential outcomes of one individual may be affected by the treatment (or exposure) of other individuals. For example, in infectious diseases, whether one individual becomes infected may de...
متن کاملInference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...
متن کاملStatistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal
This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...
متن کاملPolitical Science 236 Randomization inference
Most of this course will be devoted to the study of treatment effects in the absence of random assignment of subjects to treatments. As we will see, performing causal inference in the absence of random treatment assignment requires that we make fairly strong assumptions. In contrast, when treatment is assigned randomly, treatment effects can be estimated with very mild assumptions and, very imp...
متن کاملDecoupling, Sparsity, Randomization, and Objective Bayesian Inference
Decoupling is a general principle that allows us to separate simple components in a complex system. In statistics, decoupling is often expressed as independence, no association, or zero covariance relations. These relations are sharp statistical hypotheses, that can be tested using the FBST Full Bayesian Significance Test. Decoupling relations can also be introduced by some techniques of Design...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2019
ISSN: 0006-341X,1541-0420
DOI: 10.1111/biom.13125