Random sampling and reconstruction of spectra
نویسندگان
چکیده
منابع مشابه
Random Sampling and Signal Reconstruction Based on Compressed Sensing
Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted as little as possible of the data by applying CS and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the structure a...
متن کاملRandom Sampling and Signal Bregman Reconstruction Based on Compressed Sensing
Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted from as little as possible of the data by applying CS, and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the struc...
متن کاملRecording 2-D Nutation NQR Spectra by Random Sampling Method
The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملSpectra of Random trees
We analyze the spectral distribution of the adjacency matrix and the graph Laplacian for a wide variety of random trees. Using soft arguments which seem to be applicable in a wide variety of settings, we show that the empirical spectral distribution for a number of random tree models, converges to a constant (model dependent) distribution. We also analyze the kernel of the spectrum and prove as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Control
سال: 1971
ISSN: 0019-9958
DOI: 10.1016/s0019-9958(71)90146-x