Random Diophantine equations, I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Diophantine Equations (i)

In this paper we study the equation m−n = py,where p is a prime natural number, p≥ 3. Using the above result, we study the equations x + 6pxy + py = z and the equations ck(x 4 + 6pxy + py) + 4pdk(x y + pxy) = z, where the prime number p ∈ {3, 7, 11, 19} and (ck, dk) is a solution of the Pell equation, either of the form c −pd = 1 or of the form c − pd = −1. I. Preliminaries. We recall some nece...

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

Diophantine Approximations, Diophantine Equations, Transcendence and Applications

This article centres around the contributions of the author and therefore, it is confined to topics where the author has worked. Between these topics there are connections and we explain them by a result of Liouville in 1844 that for an algebraic number α of degree n ≥ 2, there exists c > 0 depending only on α such that | α− p q |> c qn for all rational numbers p q with q > 0. This inequality i...

متن کامل

Diophantine Equations Related with Linear Binary Recurrences

In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...

متن کامل

Diophantine Equations and Congruences

We present conditions for quadratic Diophantine equations of the form ax2 − by2 = ±1, (where 1 < a < b are integers) for which there are no solutions (x, y), yet for which there are solutions modulo n for all n ≥ 1. This generalizes work in the literature which follow as very special cases. Mathematics Subject Classification: Primary: 11D09, 11R11, 11A55; Secondary: 11R29

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2014

ISSN: 0001-8708

DOI: 10.1016/j.aim.2014.01.017