Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations
نویسندگان
چکیده
منابع مشابه
Modified augmented Lagrangian preconditioners for the incompressible NavierStokes equations
We study different variants of the augmented Lagrangian (AL)-based block-triangular preconditioner introduced by the first two authors in [SIAM J. Sci. Comput. 2006; 28: 2095–2113]. The preconditioners are used to accelerate the convergence of the Generalized Minimal Residual method (GMRES) applied to various finite element and Marker-and-Cell discretizations of the Oseen problem in two and thr...
متن کاملSolutions to Three-dimensional Navier-stokes Equations for Incompressible Fluids
This article gives explicit solutions to the space-periodic NavierStokes problem with non-periodic pressure. These type of solutions are not unique and by using such solutions one can construct a periodic, smooth, divergence-free initial vector field allowing a space-periodic and time-bounded external force such that there exists a smooth solution to the 3-dimensional Navier-Stokes equations fo...
متن کاملRandom data Cauchy problem for supercritical Schrödinger equations
— In this paper we consider the Schrödinger equation with powerlike nonlinearity and confining potential or without potential. This equation is known to be well-posed with data in a Sobolev space H if s is large enough and strongly ill-posed is s is below some critical threshold sc. Here we use the randomisation method of the inital conditions, introduced in N. Burq-N. Tzvetkov [5, 6] and we ar...
متن کاملLattice Boltzmann Model for the Incompressible NavierStokes Equation
In the last decade or so, the lattice Boltzmann (LB) method has emerged as a new and effective numerical technique of computational fluid dynamics (CFD).(1-5) Modeling of the incompressible Navier-Stokes equation is among many of its wide applications. Indeed, the lattice Boltzmann equation (LBE) was first proposed to simulate the incompressible NavierStokes equations.(1) The incompressible Nav...
متن کامل0 Ju l 2 00 7 RANDOM DATA CAUCHY THEORY FOR SUPERCRITICAL WAVE EQUATIONS I : LOCAL THEORY
— We study the local existence of strong solutions for the cubic nonlinear wave equation with data in H(M), s < 1/2, where M is a three dimensional compact riemannian manifold. This problem is supercritical and can be shown to be strongly ill-posed (in the Hadamard sense). However, after a suitable randomization, we are able to construct local strong solution for a large set of initial data in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2011
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-10762-7