Random Block Matrices and Matrix Orthogonal Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random block matrices and matrix orthogonal polynomials

In this paper we consider random block matrices, which generalize the general beta ensembles, which were recently investigated by Dumitriu and Edelmann (2002, 2005). We demonstrate that the eigenvalues of these random matrices can be uniformly approximated by roots of matrix orthogonal polynomials which were investigated independently from the random matrix literature. As a consequence we deriv...

متن کامل

Block Jacobi Matrices and Zeros of Multivariate Orthogonal Polynomials

A commuting family of symmetric matrices are called the block Jacobi matrices, if they are block tridiagonal. They are related to multivariate orthogonal polynomials. We study their eigenvalues and joint eigenvectors. The joint eigenvalues of the truncated block Jacobi matrices correspond to the common zeros of the multivariate orthogonal polynomials.

متن کامل

99 Classical skew orthogonal polynomials and random matrices

Skew orthogonal polynomials arise in the calculation of the n-point distribution function for the eigenvalues of ensembles of random matrices with orthogonal or symplectic symmetry. In particular, the distribution functions are completely determined by a certain sum involving the skew orthogonal polynomials. In the cases that the eigenvalue probability density function involves a classical weig...

متن کامل

7 Random Matrices , Non - Backtracking Walks , and Orthogonal Polynomials

Several well-known results from the random matrix theory, such as Wigner’s law and the Marchenko–Pastur law, can be interpreted (and proved) in terms of non-backtracking walks on a certain graph. Orthogonal polynomials with respect to the limiting spectral measure play a rôle in this approach.

متن کامل

Random Matrices with External Source and Multiple Orthogonal Polynomials

defined on n× nHermitian matricesM. The ensemble (1.1) consists of a general unitary invariant part V(M) and an extra termAM,whereA is a fixed n×nHermitianmatrix, the external source or the external field. Due to the external source, the ensemble (1.1) is not unitary invariant. For the special Gaussian case V(x) = (1/2)x, we can write M in (1.1) asM = H+A,whereH is a randommatrix from the GUE e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2008

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-008-0189-z