Random Asymmetric Carrier PWM Method for PMSM Vibration Reduction
نویسندگان
چکیده
منابع مشابه
Frame Vibration Suppression Method for Sensorless PMSM Drive Applications
This study proposes a novel frame anti-vibration controller for position sensorless PMSM drive application. This controller is called specific component reduction controller (SCRC). SCRC can function without an accelerometer and can achieve speed variable control. This study mainly comprises the following phases. First, the position sensorless control method will be provided. Second, the frame ...
متن کاملNovel Multilevel Inverter Carrier-Based PWM Method
The advent of the transformerless multilevel inverter topology has brought forth various pulse width modulation (PWM) schemes as a means to control the switching of the active devices in each of the multiple voltage levels in the inverter. An analysis of how existing multilevel carrier-based PWM affects switch utilization for the different levels of a diode-clamped inverter is conducted. Two ...
متن کاملLPV Control for speed of permanent magnet synchronous motor (PMSM) with PWM Inverter
This paper deals with the modeling, analysis, design and simulation of a robust control method for a permanent magnet synchronous machine (PMSM) supplied with a PWM inverter based on a LPV (Linear Parameter Variation) standard controller. Under the influence of uncertainties and external disturbances, by a variation of ±150% of motor parameters from the nominal values, the robust performance c...
متن کاملUsing a novel method for random noise reduction of seismic records
Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3001288