منابع مشابه
Radio Labeling Cartesian Graph Products
Radio labeling is derived from the assignment of radio frequencies (channels) to a set of transmitters. The frequencies assigned depend on the geographical distance between the transmitters: the closer two transmitters are, the greater the potential for interference between their signals. Thus when the distance between two transmitters is small, the difference in the frequencies assigned must b...
متن کاملGraph labeling and radio channel assignment
The vertex-labeling of graphs with nonnegative integers provides a natural setting in which to study problems of radio channel assignment. Vertices correspond to transmitter locations and their labels to radio channels. As a model for the way in which interference is avoided in real radio systems, each pair of vertices has, depending on their separation, a constraint on the difference between t...
متن کاملEdge pair sum labeling of spider graph
An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...
متن کاملSome Graph Operations Of Even Vertex Odd Mean Labeling Graphs
A graph with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f:V(G){0, 2, 4, ... 2q-2,2q} such that the induced map f*: E(G) {1, 3, 5, ... 2q-1} defined by f*(uv)= f u f v 2 is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. In this paper we pay our attention to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AKCE International Journal of Graphs and Combinatorics
سال: 2015
ISSN: 0972-8600,2543-3474
DOI: 10.1016/j.akcej.2015.11.019