Radial Basis Function Methods for the Rosenau Equation and Other Higher Order PDEs
نویسندگان
چکیده
منابع مشابه
Higher Order Logic Programming in Radial Basis Function Neural Network
Intelligent systems are yielded from integration of a logic programming and connectionist systems. Radial basis function neural network is a commonly-used type of feedforward networks. In this paper, we proposed a method for connectionist model generation using Radial Basis Function neural network to encode higher order logic programming. We encode each clause from the clauses of a logic progra...
متن کاملA Numerical Study of some Radial Basis Function based Solution Methods for Elliptic PDEs
During the last decade, three main variations have been proposed for solving elliptic PDEs by means of collocation with radial basis functions (RBFs). In this study, we have implemented them for infinitely smooth RBFs, and then compared them across the full range of values for the shape parameter of the RBFs. This was made possible by a recently discovered numerical procedure that bypasses the ...
متن کاملNumerical Solution of The First-Order Evolution Equations by Radial Basis Function
In this work, we consider the nonlinear first-order evolution equations: $u_t=f(x,t,u,u_x,u_{xx})$ for $0 to initial condition $u(x,0)=g(x)$, where $u$ is a function of $x$ and $t$ and $f$ is a known analytic function. The purpose of this paper is to introduce the method of RBF to existing method in solving nonlinear first-ord...
متن کاملA Galerkin Radial Basis Function Method for the Schrödinger Equation
In this article, we consider the discretization of the time-dependent Schrödinger equation using radial basis functions (RBFs). We formulate the discretized problem over an unbounded domain without imposing explicit boundary conditions. Since we can show that time stability of the discretization is not guaranteed for an RBF-collocation method, we propose to employ a Galerkin ansatz instead. For...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2017
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-017-0598-1