Radar coincidence imaging with phase error using Bayesian hierarchical prior modeling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Radar Coincidence Imaging

Two dimensional (2D) radar coincidence imaging is an instantaneous imaging technique which can obtain 2D focused highresolution images using a single pulse without the limitation to the target relative motions. This paper extends the imaging method to three dimensions. Such a three-dimensional (3D) radar imaging technique does not rely on Doppler frequency for resolution and has an extremely sh...

متن کامل

Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for I...

متن کامل

Bayesian Image Segmentation Using MRF's Combined with Hierarchical Prior Models

The problem of image segmentation can be formulated in the framework of Bayesian statistics. We use a Markov random field as the prior model of the spacial relationship between image pixels, and approximate an observed image by a Gaussian mixture model. In this paper, we introduce into the statistical model a hierarchical prior structure from which model parameters are regarded as drawn. This w...

متن کامل

Sparse Auto-Calibration for Radar Coincidence Imaging with Gain-Phase Errors

Radar coincidence imaging (RCI) is a high-resolution staring imaging technique without the limitation of relative motion between target and radar. The sparsity-driven approaches are commonly used in RCI, while the prior knowledge of imaging models needs to be known accurately. However, as one of the major model errors, the gain-phase error exists generally, and may cause inaccuracies of the mod...

متن کامل

Sparse Estimation using Bayesian Hierarchical Prior Modeling for Real and Complex Models

Sparse modeling and estimation of complex signals is not uncommon in practice. However, historically, much attention has been drawn to real-valued system models, lacking the research of sparse signal modeling and estimation for complex-valued models. This paper introduces a unifying sparse Bayesian formalism that generalizes to complexas well as real-valued systems. The methodology relies on hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Electronic Imaging

سال: 2016

ISSN: 1017-9909

DOI: 10.1117/1.jei.25.1.013018