Quotients of buildings by groups acting freely on chambers

نویسندگان

چکیده

We introduce certain directed multigraphs with extra structure, called Weyl graphs, which model quotients of Tits buildings by type-preserving chamber-free group actions. Their advantage over complexes groups, are often used for the CAT(0) Davis realization buildings, is that graphs exploit ultimate combinatorial W-metric structure buildings. generalize Tits's chamber systems type M allowing rank two residues to be generalized polygons flag-free actions, and easily constructed amalgamating such quotients. develop covering theory can construct as universal covers. describe a method obtaining presentation fundamental graph, acts chamber-freely on building. The developed here part fully general deals not necessarily actions stacky version

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit groups and groups acting freely on R n-trees.

We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic ...

متن کامل

Limit groups and groups acting freely on R–trees

We give a simple proof of the finite presentation of Sela’s limit groups by using free actions on Rn–trees. We first prove that Sela’s limit groups do have a free action on an Rn–tree. We then prove that a finitely generated group having a free action on an Rn–tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic gro...

متن کامل

Limit groups and groups acting freely on $\bbR^n$-trees

We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic ...

متن کامل

On the Haagerup inequality and groups acting on n-buildings

© Annales de l’institut Fourier, 1997, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

Surface Quotients of Hyperbolic Buildings

Let Ip,v be Bourdon’s building, the unique simply connected 2-complex such that all 2-cells are regular right-angled hyperbolic p-gons and the link at each vertex is the complete bipartite graph Kv,v. We investigate and mostly determine the set of triples (p, v, g) for which there exists a uniform lattice Γ = Γp,v,g in Aut(Ip,v) such that Γ \Ip,v is a compact orientable surface of genus g. Surp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2021

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2021.106730