Quinone- and nitroreductase reactions of Thermotoga maritima peroxiredoxin–nitroreductase hybrid enzyme
نویسندگان
چکیده
منابع مشابه
Quinone- and nitroreductase reactions of Thermotoga maritima thioredoxin reductase.
The Thermotoga maritima NADH:thioredoxin reductase (TmTR) contains FAD and a catalytic disulfide in the active center, and uses a relatively poorly studied physiological oxidant Grx-1-type glutaredoxin. In order to further assess the redox properties of TmTR, we used series of quinoidal and nitroaromatic oxidants with a wide range of single-electron reduction potentials (E(1)7, -0.49-0.09 V). W...
متن کاملArginine regulation in Thermotoga neapolitana and Thermotoga maritima.
Experimental data and in silico analyses of sequenced bacterial genomes indicate that arginine repressor (ArgR) proteins and their respective target sites are surprisingly well conserved in very diverse bacteria. Arginine regulation therefore constitutes an interesting model system from the study of evolutionary aspects of bacterial regulation. Moreover, arginine repressor molecules are multifu...
متن کاملThermotoga maritima phosphofructokinases: expression and characterization of two unique enzymes.
A pyrophosphate-dependent phosphofructokinase (PP(i)-PFK) and an ATP-dependent phosphofructokinase (ATP-PFK) from Thermotoga maritima have been cloned and characterized. The PP(i)-PFK is unique in that the K(m) and V(max) values indicate that polyphosphate is the preferred substrate over pyrophosphate; the enzyme in reality is a polyphosphate-dependent PFK. The ATP-PFK was not significantly aff...
متن کاملThermotoga maritima NusG: domain interaction mediates autoinhibition and thermostability
NusG, the only universally conserved transcription factor, comprises an N- and a C-terminal domain (NTD, CTD) that are flexibly connected and move independently in Escherichia coli and other organisms. In NusG from the hyperthermophilic bacterium Thermotoga maritima (tmNusG), however, NTD and CTD interact tightly. This closed state stabilizes the CTD, but masks the binding sites for the interac...
متن کاملPyruvate decarboxylase activity of the acetohydroxyacid synthase of Thermotoga maritima
Acetohydroxyacid synthase (AHAS) catalyzes the production of acetolactate from pyruvate. The enzyme from the hyperthermophilic bacterium Thermotoga maritima has been purified and characterized (kcat ~100 s-1). It was found that the same enzyme also had the ability to catalyze the production of acetaldehyde and CO2 from pyruvate, an activity of pyruvate decarboxylase (PDC) at a rate approximatel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archives of Biochemistry and Biophysics
سال: 2012
ISSN: 0003-9861
DOI: 10.1016/j.abb.2012.08.014