منابع مشابه
Understanding quaternions
The invention of the calculus of quaternions is a step towards the knowledge of quantities related to space which can only be compared for its importance with the invention of triple coordinates by Descartes. The ideas of this calculus, as distinguished from its operations and symbols, are fitted to be of the greatest use in all parts of science.-Clerk Maxwell, 1869. Quaternions came from Hamil...
متن کاملGeneralized Quaternions
The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomorphism). The other one, D4, can be constructed as a semi-direct product: D4 ∼= Aff(Z/(4)) ∼= Z/(4) o (Z/(4))× ∼= Z/(4) o Z/(2), where the elements of Z/(2) act on Z/(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We wil...
متن کاملInvolution Matrices of Real Quaternions
An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.
متن کاملGrand Antiprism and Quaternions
Vertices of the 4-dimensional semi-regular polytope, the grand antiprism and its symmetry group of order 400 are represented in terms of quaternions with unit norm. It follows from the icosian representation of the E8 root system which decomposes into two copies of the root system of H4. The symmetry of the grand antiprism is a maximal subgroup of the Coxeter groupW (H4). It is the groupAut(H2⊕...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 1896
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.3.55.99