منابع مشابه
On Caps and Cap Partitions of Galois Projective Spaces
Let PG(N, q) be the projective space of dimension N over the finite field GF (q). A k–cap K in PG(N, q) is a set of k points, no three of which are collinear [16], and a k–cap is called complete if it is maximal with respect to set–theoretic inclusion. The maximum value of k for which there exists a k–cap in PG(N, q) is denoted by m2(N, q). This number m2(N, q) is only known, for arbitrary q, w...
متن کاملQuasi-projective covers of right $S$-acts
In this paper $S$ is a monoid with a left zero and $A_S$ (or $A$) is a unitary right $S$-act. It is shown that a monoid $S$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $S$-act is quasi-projective. Also it is shown that if every right $S$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...
متن کاملProjective embedding of projective spaces
In this paper, embeddings φ : M → P from a linear space (M,M) in a projective space (P,L) are studied. We give examples for dimM > dimP and show under which conditions equality holds. More precisely, we introduce properties (G) (for a line L ∈ L and for a plane E ⊂ M it holds that |L ∩ φ(M)| 6 = 1) and (E) (φ(E) = φ(E) ∩ φ(M), whereby φ(E) denotes the by φ(E) generated subspace of P ). If (G) a...
متن کاملStrict Partitions of Maximal Projective Degree
The projective degrees of strict partitions of n were computed for all n ≤ 100 and the partitions with maximal projective degree were found for each n. It was observed that maximizing partitions for successive values of n “lie close to each other” in a certain sense. Conjecturing that this holds for larger values of n, the partitions of maximal degree were computed for all n ≤ 220. The results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2003
ISSN: 1370-1444
DOI: 10.36045/bbms/1054818026