Quasi-nonexpansive multi-valued maps and selections
نویسندگان
چکیده
منابع مشابه
Ishikawa Type Algorithm of Two Multi-valued Quasi-nonexpansive Maps on Nonlinear Domains
We study an Ishikawa type algorithm for two multi-valued quasinonexpansive maps on a special class of nonlinear spaces namely hyperbolic metric spaces; in particular, strong and 4−convergence theorems for the proposed algorithms are established in a uniformly convex hyperbolic space which improve and extend the corresponding known results in uniformly convex Banach spaces. Our new results are a...
متن کاملNonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings
In this paper, based on viscosity technique with perturbation, we introduce a new non-linear viscosity algorithm for finding a element of the set of fixed points of nonexpansivemulti-valued mappings in a Hilbert space. We derive a strong convergence theorem for thisnew algorithm under appropriate assumptions. Moreover, in support of our results, somenumerical examples (u...
متن کاملBest proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces
This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$
متن کاملStrong Convergence Theorem for Infinite Family of Total Quasi-φ-asymptotically Nonexpansive Multi-valued Mappings
We prove strong convergence theorem for infinite family of uniformly L−Lipschitzian total quasi-φ-asymptotically nonexpansive multi-valued mappings using a generalized f−projection operator in a real uniformly convex and uniformly smooth Banach space. The result presented in this paper improve and unify important recent results announced by many authors.
متن کاملCharacterization of (quasi)convex Set-valued Maps
The aim of this paper is to characterize in terms of classical (quasi)convexity of extended real-valued functions the set-valued maps which are K-(quasi)convex with respect to a convex cone K. In particular, we recover some known characterizations of K-(quasi)convex vector-valued functions, given by means of the polar cone of K.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1975
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-87-2-109-119