Quasi-multiplicative maps on Baer semigroups
نویسندگان
چکیده
منابع مشابه
On quasi-baer modules
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
متن کاملADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE
In this work, we investigate admitting center map on multiplicative metric space and establish some fixed point theorems for such maps. We modify the Banach contraction principle and the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some useful theorems. Our results on multiplicative metric space improve and modify s...
متن کاملOn Maximal Subsemigroups of Partial Baer-Levi Semigroups
Suppose that X is an infinite set with |X| ≥ q ≥ א0 and I X is the symmetric inverse semigroup defined on X. In 1984, Levi and Wood determined a class of maximal subsemigroups MA using certain subsets A of X of the Baer-Levi semigroup BL q {α ∈ I X : dom α X and |X \ Xα| q}. Later, in 1995, Hotzel showed that there are many other classes of maximal subsemigroups of BL q , but these are far more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1972
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s001708950000149x