Quasi-Lipschitz equivalence of subsets of Ahlfors-David regular sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangents and Rectifiability of Ahlfors Regular Lipschitz Differentiability Spaces

We study Lipschitz differentiability spaces, a class of metric measure spaces introduced by Cheeger in [8]. We show that if an Ahlfors regular Lipschitz differentiability space has charts of maximal dimension, then, at almost every point, all its tangents are uniformly rectifiable. In particular, at almost every point, such a space admits a tangent that is isometric to a finite-dimensional Bana...

متن کامل

Independent sets in quasi-regular graphs

New upper bounds for the number of independent sets in graphs are obtained. c © 2006 Published by Elsevier Ltd 1. Definitions and the statement of results All graphs under consideration are finite, undirected, and simple. The vertices are considered as numbered. Denote the degree of a vertex v by σ(v). G is called an (n, k, θ)-graph if it has n vertices and k ≤ σ(v) ≤ k + θ for any vertex v. Ev...

متن کامل

Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets

Let $S$ be an ordered semigroup. A fuzzy subset of $S$ is anarbitrary mapping   from $S$ into $[0,1]$, where $[0,1]$ is theusual interval of real numbers. In this paper,  the concept of fuzzygeneralized bi-ideals of an ordered semigroup $S$ is introduced.Regular ordered semigroups are characterized by means of fuzzy leftideals, fuzzy right ideals and fuzzy (generalized) bi-ideals.Finally, two m...

متن کامل

Quasi-regular Relations – a New Class of Relations on Sets

Following Jiang Guanghao and Xu Luoshan’s concept of conjugative, dually conjugative, normal and dually normal relations on sets, the concept of quasi-regular relations is introduced. Characterizations of quasi-regular relations are obtained and it is shown when an anti-order relation is quasiregular. Some nontrivial examples of quasi-regular relations are given. At the end we introduce dually ...

متن کامل

Lipschitz Representations of Subsets of the Cube

We show that for any class of uniformly bounded functions H with a reasonable combinatorial dimension, the vast majority of small subsets of the n-dimensional combinatorial cube cannot be represented as a Lipschitz image of a subset of H, unless the Lipschitz constant is very large. We apply this result to the case when H consists of linear functionals of norm at most one on a Hilbert space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica

سال: 2014

ISSN: 1239-629X,1798-2383

DOI: 10.5186/aasfm.2014.3930