Quasi-linear approach : exact solution for nonlinear Green function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-linear approach : exact solution for nonlinear Green function

A formal way to obtain a recently found solution of the problem of nonlinear interaction of two non-concentric spherical waves in terms of quasi-linear approach is described.

متن کامل

On the Exact Solution for Nonlinear Partial Differential Equations

In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...

متن کامل

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

An Exact Solution for Quasi-Static Poro-Thermoelasticity in Spherical Coordin

In this paper the Quasi-Static poro-thermoelasticity model of a hollow and solid sphere under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the Quasi-Static equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a ...

متن کامل

KAM for quasi-linear and fully nonlinear forced KdV

We prove the existence of quasi-periodic, small amplitude, solutions for quasi-linear and fully nonlinear forced perturbations of KdV equations. For Hamiltonian or reversible nonlinearities we also obtain the linear stability of the solutions. The proofs are based on a combination of different ideas and techniques: (i) a Nash-Moser iterative scheme in Sobolev scales. (ii) A regularization proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Le Journal de Physique IV

سال: 1994

ISSN: 1155-4339

DOI: 10.1051/jp4:19945180