Quasi-linear approach : exact solution for nonlinear Green function
نویسندگان
چکیده
منابع مشابه
Quasi-linear approach : exact solution for nonlinear Green function
A formal way to obtain a recently found solution of the problem of nonlinear interaction of two non-concentric spherical waves in terms of quasi-linear approach is described.
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملAn Exact Solution for Quasi-Static Poro-Thermoelasticity in Spherical Coordin
In this paper the Quasi-Static poro-thermoelasticity model of a hollow and solid sphere under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the Quasi-Static equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a ...
متن کاملKAM for quasi-linear and fully nonlinear forced KdV
We prove the existence of quasi-periodic, small amplitude, solutions for quasi-linear and fully nonlinear forced perturbations of KdV equations. For Hamiltonian or reversible nonlinearities we also obtain the linear stability of the solutions. The proofs are based on a combination of different ideas and techniques: (i) a Nash-Moser iterative scheme in Sobolev scales. (ii) A regularization proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Le Journal de Physique IV
سال: 1994
ISSN: 1155-4339
DOI: 10.1051/jp4:19945180