Quasi-cyclic complementary dual codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Cyclic Complementary Dual Code

LCD codes are linear codes that intersect with their dual trivially. Quasi-cyclic codes that are LCD are characterized and studied by using their concatenated structure. Some asymptotic results are derived. Hermitian LCD codes are introduced to that end and their cyclic subclass is characterized. Constructions of QCCD codes from codes over larger alphabets are given.

متن کامل

Good self-dual quasi-cyclic codes exist

We show that there are long binary quasi-cyclic self-dual (either Type I or Type II) codes satisfying the Gilbert–Varshamov bound.

متن کامل

Construction of quasi-cyclic self-dual codes

There is a one-to-one correspondence between l-quasi-cyclic codes over a finite field Fq and linear codes over a ring R = Fq[Y ]/(Y m − 1). Using this correspondence, we prove that every l-quasi-cyclic self-dual code of length ml over a finite field Fq can be obtained by the building-up construction, provided that char (Fq) = 2 or q ≡ 1 (mod 4), m is a prime p, and q is a primitive element of F...

متن کامل

Quasi-cyclic self-dual codes of length 70

In this paper we obtain a number of [70,35,12] singly even self-dual codes as a quasi-cyclic codes with m=2 (tailbitting convolutional codes). One of them is the first known code with parameters Beta=140 Gamma=0. All codes are not pure double circulant i.e. could not be represented in systematic form. Keywords—convolutional encoding, quasi-cyclic codes weight enumeratorg, double circulant

متن کامل

Good Self-dual Generalized Quasi-Cyclic Codes Exist

We show that there are good long binary generalized quasi-cyclic self-dual (either Type I or Type II) codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2016

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2016.07.005