Quasi-configurations: Building blocks for point-line configurations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-configurations: building blocks for point-line configurations

We study generalized point – line configurations and their properties in the projective plane. These generalized configurations can serve as building blocks for (n4) configurations. In this way, we construct (374) and (434) configurations. The existence problem of finding such configurations for the remaining cases (224), (234), and (264) remains open.

متن کامل

Iterated Point-Line Configurations Grow Doubly-Exponentially

Begin with a set of four points in the real plane in general position. Add to this collection the intersection of all lines through pairs of these points. Iterate. Ismailescu and Radoičić (2003) showed that the limiting set is dense in the plane. We give doubly exponential upper and lower bounds on the number of points at each stage. The proof employs a variant of the Szemerédi-Trotter Theorem ...

متن کامل

Subquadratic Encodings for Point Configurations

For most algorithms dealing with sets of points in the plane, the only relevant information carried by the input is the combinatorial configuration of the points: the orientation of each triple of points in the set (clockwise, counterclockwise, or collinear). This information is called the order type of the point set. In the dual, realizable order types and abstract order types are combinatoria...

متن کامل

On Matching Point Configurations

We present an algorithm that verifies if two unlabeled configurations of N points in Rd are or are not an orthogonal transformation of one another, and if applicable, explicitly compute that transformation. We also give a formula for the orthogonal transformation in the case of noisy measurements. AMS subject classification: 65F15, 65F35, 65G99.

متن کامل

1 Finite Point Configurations

The study of combinatorial properties of finite point configurations is a vast area of research in geometry, whose origins go back at least to the ancient Greeks. Since it includes virtually all problems starting with “consider a set of n points in space,” space limitations impose the necessity of making choices. As a result, we will restrict our attention to Euclidean spaces and will discuss p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2015

ISSN: 1855-3974,1855-3966

DOI: 10.26493/1855-3974.642.bbb