Quantum optomechanical straight-twin engine
نویسندگان
چکیده
منابع مشابه
Quantum theory of optomechanical cooling
We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 10, and they may soon go to the ground state of mechanical motio...
متن کاملQuantum effects in optomechanical systems
The search for experimental demonstrations of the quantum behavior of macroscopic mechanical resonators is a fastly growing field of investigation and recent results suggest that the generation of quantum states of resonators with a mass at the microgram scale is within reach. In this chapter we give an overview of two important topics within this research field: cooling to the motional ground ...
متن کاملExamples of Quantum Dynamics in Optomechanical Systems
Optomechanical systems exploit the interaction between the optical radiation field and mechanical resonators in a laser-driven cavity. In the past few years, these systems have been the focus of considerable experimental and theoretical attention, yielding promising successes, particularly in using optomechanical cooling to reduce the thermal occupation of the resonators. This offers the prospe...
متن کاملCoherent quantum-noise cancellation for optomechanical sensors.
Using a flow chart representation of quantum optomechanical dynamics, we design coherent quantum-noise-cancellation schemes that can eliminate the backaction noise induced by radiation pressure at all frequencies and thus overcome the standard quantum limit of force sensing. The proposed schemes can be regarded as novel examples of coherent feedforward quantum control.
متن کاملCollective Optomechanical Effects in Cavity Quantum Electrodynamics.
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipoles with a polymer we calculate the partition function of the coupled light-matter system and demonstrate that it exhibits a second order phase trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2017
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.95.053870