Quantum metric statistics for random-matrix families
نویسندگان
چکیده
منابع مشابه
Chiral Random Matrix Model for Critical Statistics
We propose a random matrix model that interpolates between the chiral random matrix ensembles and the chiral Poisson ensemble. By mapping this model on a noninteracting Fermi-gas we show that for energy differences less than a critical energy Ec the spectral correlations are given by chiral Random Matrix Theory whereas for energy differences larger than Ec the number variance shows a linear dep...
متن کاملStatistics of infinite dimensional random matrix ensembles
A complex quantum system with energy dissipation is considered. The quantum Hamiltonians H belong the complex Ginibre ensemble. The complex-valued eigenenergies Zi are random variables. The second differences ∆Zi are also complex-valued random variables. The second differences have their real and imaginary parts and also radii (moduli) and main arguments (angles). For N=3 dimensional Ginibre en...
متن کاملQuantum propagators in a random metric
We consider second order differential operators with coefficients which are Gaussian random fields. When the covariance becomes singular at short distances then the propagators of the Schrödinger equation as well as of the wave equation behave in an anomalous way. In particular, the Feynman propagator for the wave equation is less singular than the one with deterministic coefficients. We sugges...
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملPoisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles
The two archetypal ensembles of random matrices are Wigner real symmetric (Hermitian) random matrices and Wishart sample covariance real (complex) random matrices. In this paper we study the statistical properties of the largest eigenvalues of such matrices in the case when the second moments of matrix entries are infinite. In the first two subsections we consider Wigner ensemble of random matr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2020
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/ab91d6