Quantum criticality in twisted transition metal dichalcogenides
نویسندگان
چکیده
Near the boundary between ordered and disordered quantum phases, several experiments have demonstrated metallic behaviour that defies Landau Fermi paradigm1–5. In moiré heterostructures, gate-tuneable insulating phases driven by electronic correlations been recently discovered6–23. Here, we use transport measurements to characterize metal–insulator transitions (MITs) in twisted WSe2 near half filling of first subband. We find MIT as a function both density displacement field is continuous. At boundary, resistivity displays strange metal at low temperatures, with dissipation comparable Planckian limit. Further into phase, liquid recovered temperature, this evolves critical fan intermediate before eventually reaching an anomalous saturated regime room temperature. An analysis residual indicates presence strong fluctuations phase. These results establish new platform study doping bandwidth-controlled phase on triangular lattice. Metal-to-insulator are characterized WSe, revealing criticality temperatures.
منابع مشابه
Quantum Criticality at the Metal Insulator Transition
We introduce a new method to analysis the many-body problem with disorder. The method is an extension of the real space renormalization group based on the operator product expansion. We consider the problem in the presence of interaction, large elastic mean free path, and finite temperatures. As a result scaling is stopped either by temperature or the length scale set by the diverging many-body...
متن کاملExciton formation in monolayer transition metal dichalcogenides.
Two-dimensional transition metal dichalcogenides provide a unique platform to study excitons in confined structures. Recently, several important aspects of excitons in these materials have been investigated in detail. However, the formation process of excitons from free carriers has yet to be understood. Here we report time-resolved measurements on the exciton formation process in monolayer sam...
متن کاملPlasmon dispersion in layered transition-metal dichalcogenides
Pierluigi Cudazzo,1 Matteo Gatti,1 and Angel Rubio1,2 1Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento Fı́sica de Materiales, Universidad del Paı́s Vasco, Centro de Fı́sica de Materiales CSIC-UPV/EHU-MPC and DIPC, Avenida Tolosa 72, E-20018 San Sebastián, Spain 2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Theory Department, Faradayweg 4-6, D-14195 Berlin-Dahl...
متن کاملTopological superconductivity in monolayer transition metal dichalcogenides
Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as c...
متن کاملPatterning Superatom Dopants on Transition Metal Dichalcogenides.
This study describes a new and simple approach to dope two-dimensional transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Semiconducting TMDCs are wired into field-effect transistor devices and then immersed into a solution of these superatoms. The degree of doping is determined by the concentration of the superatoms in solution and by the length ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2021
ISSN: ['1476-4687', '0028-0836']
DOI: https://doi.org/10.1038/s41586-021-03815-6