Quantum Computing of Quantum Chaos and Imperfection Effects
نویسندگان
چکیده
منابع مشابه
Quantum computing of quantum chaos and imperfection effects.
We study numerically the imperfection effects in the quantum computing of the kicked rotator model in the regime of quantum chaos. It is shown that there are two types of physical characteristics: for one of them the quantum computation errors grow exponentially with the number of qubits in the computer, while for the other the growth is polynomial. A certain similarity between classical and qu...
متن کاملQuantum chaos border for quantum computing
We study a generic model of quantum computer, composed of many qubits coupled by short-range interaction. Above a critical interqubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of the computer eigenstates. In this regime the noninteracting qubit structure disappears, the eigenstates become complex, and the operability of the computer is destroyed. Despite the fact t...
متن کاملExponential gain in quantum computing of quantum chaos and localization.
We present a quantum algorithm which simulates the quantum kicked rotator model exponentially faster than classical algorithms. This shows that important physical problems of quantum chaos, localization, and Anderson transition can be modeled efficiently on a quantum computer. We also show that a similar algorithm simulates efficiently classical chaos in certain area-preserving maps.
متن کاملQuantum computing of quantum chaos in the kicked rotator model.
We investigate a quantum algorithm that simulates efficiently the quantum kicked rotator model, a system that displays rich physical properties and enables to study problems of quantum chaos, atomic physics, and localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in numerical simulations with up to 20 qubits. In this way various physical qu...
متن کاملImperfection effects for multiple applications of the quantum wavelet transform.
We study analytically and numerically the effects of various imperfections in a quantum computation of a simple dynamical model based on the quantum wavelet transform. The results for fidelity time scales, obtained for a large range of error amplitudes and number of qubits, imply that for static imperfections the threshold for fault-tolerant quantum computation is decreased by a few orders of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2001
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.86.2162