Quantum cascade laser based standoff photoacoustic chemical detection
نویسندگان
چکیده
منابع مشابه
Photoacoustic Chemical Sensing: Ultracompact Sources and Standoff Detection
Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace detection of gaseous and condensed media. We have previously demonstrated favorable PAS gas detection characteristics when the system dimensions are scaled to a micro-system design. This design includes quantum cascade laser (QCL)-based microelectromechanical systems (MEMS)-scale photoacoustic sensor...
متن کاملQuantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas
We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH(2)O) using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 μm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm(-1) is selected for CH(2)...
متن کاملCompact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide.
A compact gas sensor system based on quartz-enhanced photoacoustic spectroscopy (QEPAS) employing a continuous wave (CW) distributed feedback quantum cascade laser (DFB-QCL) operating at 4.59 µm was developed for detection of carbon disulfide (CS2) in air at trace concentration. The influence of water vapor on monitored QEPAS signal was investigated to enable compensation of this dep...
متن کاملQuantum Cascade Laser-Based Photoacoustic Spectroscopy for Trace Vapor Detection and Molecular Discrimination
We report on the development of a microelectromechanical systems (MEMS)-scale photoacoustic sensor for the detection of trace gases. A mid-infrared quantum cascade laser (QCL) was used to determine detection limits for acetic acid, acetone, 1,4-dioxane, and vinyl acetate. The source was continuously tunable from 1015 cm(-1) to 1240 cm(-1), allowing for the collection of photoacoustic vibrationa...
متن کاملRemote mid-infrared photoacoustic spectroscopy with a quantum cascade laser.
We demonstrate non-contact remote photoacoustic spectroscopy in the mid-infrared region. A room-temperature-operated pulsed external-cavity quantum cascade laser is used to excite photoacoustic waves within a semitransparent sample. The ultrasonic waves are detected remotely on the opposite side of the sample using a fiber-optic Mach-Zehnder interferometer, thereby avoiding problems associated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2011
ISSN: 1094-4087
DOI: 10.1364/oe.19.020251