Quantitative structure-skin permeability relationships

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting skin permeability from complex chemical mixtures: dependency of quantitative structure permeation relationships on biology of skin model used.

Dermal absorption of topically applied chemicals usually occurs from complex chemical mixtures; yet, most attempts to quantitate dermal permeability use data collected from single chemical exposure in aqueous solutions. The focus of this research was to develop quantitative structure permeation relationships (QSPR) for predicting chemical absorption from mixtures through skin using two levels o...

متن کامل

Development of quantitative structure-pharmacokinetic relationships.

Quantitative structure-activity relationships (QSAR) relating biological activity to physiochemical descriptors have been successfully used for a number of years. It is also long recognized that pharmacokinetic parameters may play an important and even determinant role in drug action. This prompted several researchers to focus attention to pharmacokinetic parameters as potential descriptors in ...

متن کامل

Quantitative Structure^retention Relationships (qsrr) Inchromatography

To relate structure and chromatographic retention an approach is needed that lacks the rigour of thermodynamics but which provides otherwise inaccessible information. Such an approach is a combination of detailed models with certain thermodynamic concepts. Linear free-energy relationships (LFER) may be regarded as linear relationships between the logarithms of the rate or equilibria constants f...

متن کامل

Nonlinear Prediction of Quantitative Structure-Activity Relationships

Predicting the log of the partition coefficient P is a long-standing benchmark problem in Quantitative Structure-Activity Relationships (QSAR). In this paper we show that a relatively simple molecular representation (using 14 variables) can be combined with leading edge machine learning algorithms to predict logP on new compounds more accurately than existing benchmark algorithms which use comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Toxicology

سال: 2017

ISSN: 0300-483X

DOI: 10.1016/j.tox.2017.06.008