Quantitative relations between modulational instability and several well-known nonlinear excitations
نویسندگان
چکیده
منابع مشابه
Modulational instability in nonlocal nonlinear Kerr media.
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for...
متن کاملModulational instability in periodic quadratic nonlinear materials.
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by a...
متن کاملModulational instability: first step towards energy localization in nonlinear lattices
We study the modulational instability in discrete lattices and we show how the discreteness drastically modifies the stability condition. Analytical and numerical results are in very good agreement. We predict also the evolution of a linear wave in the presence of noise and we show that modulational instability is the first step towards energy localization. PACS numbers: 6310, 0340K, 4610, 0545
متن کاملModulational Instability for Nonlinear Schrödinger Equations with a Periodic Potential
We study the stability properties of periodic solutions to the Nonlinear Schrödinger (NLS) equation with a periodic potential. We exploit the symmetries of the problem, in particular the Hamiltonian structure and the U(1) symmetry. We develop a simple sufficient criterion that guarantees the existence of a modulational instability spectrum along the imaginary axis. In the case of small amplitud...
متن کاملUniversal Nature of the Nonlinear Stage of Modulational Instability.
We characterize the nonlinear stage of modulational instability (MI) by studying the longtime asymptotics of the focusing nonlinear Schrödinger (NLS) equation on the infinite line with initial conditions tending to constant values at infinity. Asymptotically in time, the spatial domain divides into three regions: a far left and a far right field, in which the solution is approximately equal to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Optical Society of America B
سال: 2016
ISSN: 0740-3224,1520-8540
DOI: 10.1364/josab.33.000850