Quantitative recurrence properties for self-conformal sets

نویسندگان

چکیده

In this paper we study the quantitative recurrence properties of self-conformal sets X X equipped with map T colon upper X right-arrow T : ? encoding="application/x-tex">T:X\to X induced by left shift. particular, given a function alttext="phi double-struck N left-parenthesis 0 comma normal infinity right-parenthesis comma"> ? N stretchy="false">( 0 , mathvariant="normal">?<!-- ? stretchy="false">) encoding="application/x-tex">\varphi :\mathbb {N}\to (0,\infty ), metric set R = { x ?<!-- ? stretchy="false">| n ?<!-- ? <mml:mo>&gt; } . encoding="application/x-tex">\begin{equation*} R(T,\varphi )=\left \{x\in X:|T^nx-x|&gt;\varphi (n)\text { }n\in \mathbb {N}\right \}. \end{equation*} Our main result shows that natural measure supported on , right-parenthesis"> encoding="application/x-tex">R(T,\varphi ) has zero if volume sum converges, and under open condition full diverges.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative recurrence properties of expanding maps

Under a map T , a point x recurs at rate given by a sequence {rn} near a point x0 if d(T(x), x0) < rn infinitely often. Let us fix x0, and consider the set of those x’s. In this paper, we study the size of this set for expanding maps and obtain its measure and sharp lower bounds on its dimension involving the entropy of T , the local dimension near x0 and the upper limit of 1 n log 1 rn . We ap...

متن کامل

Locally Minimal Sets for Conformal Dimension

We show that for each 1 ≤ α < d and K < ∞ there is a subset X of R such that dim(f(X)) ≥ α = dim(X) for every K -quasiconformal map, but such that dim(g(X)) can be made as small as we wish for some quasiconformal g , i.e., the conformal dimension of X is zero. These sets are then used to construct new examples of minimal sets for conformal dimension and sets where the conformal dimension is not...

متن کامل

Sets That Force Recurrence

We characterize those subsets S of the positive integers with the property that, whenever a point x in a dynamical system enters a compact set K along S, K contains a recurrent point. We do the same for uniform recurrence. Let X denote a (compact) metric space and f : X → X a continuous map. We will use the term (compact) dynamical system to refer to such a pair (X, f) . As usual, we write f fo...

متن کامل

Quantitative Modeling of Self-organizing Properties

For analyzing properties of complex systems, a mathematical model for these systems is useful. In this paper we give quantitative definitions of adaptivity, target orientation, homogeneity and resilience with respect to faulty nodes or attacks by intruders. The modeling of the system is done by using a multigraph to describe the connections between objects and stochastic automatons for the beha...

متن کامل

Continuity of the Hausdorff Dimension for Sub - Self - Conformal Sets ( Communicated

Self-similar sets and self-conformal sets have been studied extensively. Recently, Falconer introduced sub-self-similar sets for a generalization of self-similar sets, and obtained the Hausdorff dimension and Box dimension for these sets if the open set condition (OSC) is satisfied. Chen and Xiong proved the continuity of the Hausdorff dimension for sub-self-similar sets under the assumption th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15285