Quantile regression under memory constraint
نویسندگان
چکیده
منابع مشابه
Nonlinear Quantile Regression under Dependence and Heterogeneity
This paper derives the asymptotic normality of the nonlinear quantile regression estimator with dependent errors. The required assumptions are weak, and it is neither assumed that the error process is stationary nor that it is mixing. In fact, the notion of weak dependence introduced in this paper, can be considered as a quantile specific local variant of known concepts. The connection of the d...
متن کاملEXTREMAL QUANTILE REGRESSION 3 quantile regression
Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...
متن کاملIsotonic Regression under Lipschitz Constraint
The pool adjacent violators (PAV) algorithm is an efficient technique for the class of isotonic regression problems with complete ordering. The algorithm yields a stepwise isotonic estimate which approximates the function and assigns maximum likelihood to the data. However, if one has reasons to believe that the data were generated by a continuous function, a smoother estimate may provide a bet...
متن کاملQuantile Regression
The purpose of regression analysis is to expose the relationship between a response variable and predictor variables. In real applications, the response variable cannot be predicted exactly from the predictor variables. Instead, the response for a fixed value of each predictor variable is a random variable. For this reason, we often summarize the behavior of the response for fixed values of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2019
ISSN: 0090-5364
DOI: 10.1214/18-aos1777