Quantile Estimation Using the Log-Skew-Normal Linear Regression Model with Application to Children’s Weight Data
نویسندگان
چکیده
In this article, we establish properties that relate quantiles of the log-skew-normal distribution to its parameters, allowing us investigate relationship between a positive skewed response variable and set explanatory variables via linear regression model. We compute maximum likelihood estimates parameters through correspondence skew-normal models. Monte Carlo simulations show satisfactory performance quantile estimators. An application children’s data is presented discussed.
منابع مشابه
Comparing the Efficiency of Dmus with Normal and Skew-Normal Distribution using Data Envelopment Analysis
Data envelopment analysis (DEA) is a nonparametric approach to evaluate theefficiency of decision making units (DMU) using mathematical programmingtechniques. Almost, all of the previous researches in stochastic DEA have been usedthe stochastic data when the inputs and outputs are normally distributed. But, thisassumption may not be true in practice. Therefore, using a normal distribution wi...
متن کاملEfficient Semiparametric Estimation of a Partially Linear Quantile Regression Model
This paper is concerned with estimating a conditional quantile function that is assumed to be partially linear+ The paper develops a simple estimator of the parametric component of the conditional quantile+ The semiparametric efficiency bound for the parametric component is derived, and two types of efficient estimators are considered+ Asymptotic properties of the proposed estimators are establ...
متن کاملTail Exponent Estimation via Broadband Log Density-Quantile Regression
Heavy tail probability distributions are important in many scientific disciplines such as hydrology, geology, and physics and therefore feature heavily in statistical practice. Rather than specifying a family of heavy-tailed distributions for a given application, it is more common to use a nonparametric approach, where the distributions are classified according to the tail behavior. Through the...
متن کاملQuantile Regression Estimation of Nonlinear Longitudinal Data
This paper examines a weighted version of the quantile regression estimator defined by Koenker and Bassett (1978), adjusted to the case of nonlinear longitudinal data. Different weights are used and compared by computer simulation using a four-parameter logistic growth function and error terms following an AR(1) model. It is found that the estimator is performing quite well, especially for the ...
متن کاملEstimation of single-index quantile regression Model
Abstract The conditional quantile function m(X) of response variable Y given the value of covariate X is modeled through a single-index model, i.e. m(X) = m(θ 0 X) for some unknown parameter vector θ0. An iterated algorithm is proposed to estimate θ0. To establish the root-n consistency of the estimator, we prove a convexity lemma for almost sure convergence, parallel to the results by Pollard ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11173736