Quadratic Reciprocity in a Finite Group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Reciprocity in a Finite Group

The law of quadratic reciprocity is a gem from number theory. In this article we show that it has a natural interpretation that can be generalized to an arbitrary finite group. Our treatment relies almost exclusively on concepts and results known at least a hundred years ago. A key role in our story is played by group characters. Recall that a character χ of a finite Abelian group G is a homomo...

متن کامل

Group Reciprocity Group Reciprocity

People exhibit group reciprocity when they retaliate, not against the person who harmed them, but against somebody else in that person's group. Group reciprocity may be a key motivation behind intergroup conflict. We investigated group reciprocity in a laboratory experiment. After a group identity manipulation, subjects played a Prisoner's Dilemma with others from different groups. Subjects the...

متن کامل

Quadratic Reciprocity

Quadratic Reciprocity is arguably the most important theorem taught in an elementary number theory course. Since Gauss’ original 1796 proof (by induction!) appeared, more than 100 different proofs have been discovered. Here I present one proof which is not particularly well-known, due to George Rousseau [2]. (The proof was rediscovered more recently by (then) high-schooler Tim Kunisky [1].) Alt...

متن کامل

Group Theory and the Law of Quadratic Reciprocity

This paper explores the role of group theory in providing a proof for the Law of Quadratic Reciprocity, which states that for distinct odd primes pand q, q is a quadratic residue mod p if and only if p is a quadratic residue mod q, unless p and q are both congruent to 3 mod 4. The Law of Quadratic Reciprocity is an important result in number theory; it provides us with a simple method to determ...

متن کامل

Quadratic Reciprocity in Odd Characteristic

The answer to questions like this can be found with the quadratic reciprocity law in F[T ]. It has a strong resemblance to the quadratic reciprocity law in Z. We restrict to F with odd characteristic because when F has characteristic 2 every element of F[T ]/(π) is a square, so our basic question is silly in characteritic 2. (There is a good analogue of quadratic reciprocity in characteristic 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The American Mathematical Monthly

سال: 2005

ISSN: 0002-9890

DOI: 10.2307/30037441