منابع مشابه
On the q-Laplace Transform and Related Special Functions
Abstract: Motivated by statistical mechanics contexts, we study the properties of the q-Laplace transform, which is an extension of the well-known Laplace transform. In many circumstances, the kernel function to evaluate certain integral forms has been studied. In this article, we establish relationships between q-exponential and other well-known functional forms, such as Mittag–Leffler functio...
متن کاملLaplace Transform
We have seen before that Fourier analysis is very useful in the study of signals and linear and time invariant (LTI) systems. The main reason is that a lot of signals can be expressed as a linear combination of complex exponentials of the form e with s = jw. There are many properties that still apply when s is not restricted to be pure imaginary. That is why we introduce a generalization of the...
متن کاملThe h-Laplace and q-Laplace transforms
Article history: Received 12 May 2009 Available online 6 October 2009 Submitted by B.S. Thomson
متن کاملthe Laplace transform.
The spherical phylon group and invariants of the Laplace transform. Abstract We introduce the spherical phylon group, a subgroup of the group of all formal diffeomorphisms of R d that fix the origin. The invariant theory of the spherical phylon group is used to understand the invariants of the Laplace transform.
متن کاملLaplace transform numerical inversion v3.0
When running an analytical liquid rate simulation on a bounded reservoir an artefact due to Laplace transform numerical inversion algorithm can be noticed. This issue can be illustrated with a simple example: liquid rate simulation on a closed circular homogeneous reservoir with a fracture. The details of the simulation are graphically given in Figure 1(a). The simulation results can be seen in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2016
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2016.61003