q-Binomials and related symmetric unimodal polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unimodal Polynomials Arising from Symmetric Functions

We present a general result that, using the theory of symmetric functions, produces several new classes of symmetric unimodal polynomials. The result has applications to enumerative combinatorics including the proof of a conjecture by R. Stanley.

متن کامل

Symmetric Identities of the q-Euler Polynomials

an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we study some symmetric identities of q-Euler numbers and polynomials. From these properties, we derive several identities of q-Euler numbers and polynomials.

متن کامل

Unimodal Time-symmetric Dynamics

Time-symmetric cycles are defined. Unimodal time-symmetric cycles are classified. A one-parameter family of maps of the closed unit interval that exhibits this classification is given. 1. Introduction. In one-dimensional dynamics, the maps that are studied are usually noninvertible. The initial reason for studying these maps was that they had complicated behavior that was reminiscent of diffeom...

متن کامل

Braids, Q-binomials and Quantum Groups

The classical identities between the q-binomial coefficients and factorials can be generalized to a context where numbers are replaced by braids. More precisely, for every pair i, n of natural numbers, there is defined an element b (n) i of the braid group algebra kBn, and these satisfy analogs of the classical identities for the binomial coefficients. By choosing representations of the braid g...

متن کامل

Q-operator and Factorised Separation Chain for Jack’s Symmetric Polynomials

Applying Baxter’s method of the Q-operator to the set of Sekiguchi’s commuting partial differential operators we show that Jack’s symmetric polynomials P (1/g) λ (x1, . . . , xn) are eigenfunctions of a one-parameter family of integral operators Qz . The operators Qz are expressed in terms of the Dirichlet-Liouville n-dimensional beta integral. From a composition of n operators Qzk we construct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Difference Equations and Applications

سال: 2019

ISSN: 1023-6198,1563-5120

DOI: 10.1080/10236198.2019.1572125