PULP-NN: accelerating quantized neural networks on parallel ultra-low-power RISC-V processors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Deep Neural Networks on Low Power Heterogeneous Architectures

Deep learning applications are able to recognise images and speech with great accuracy, and their use is now everywhere in our daily lives. However, developing deep learning architectures such as deep neural networks in embedded systems is a challenging task because of the demanding computational resources and power consumption. Hence, sophisticated algorithms and methods that exploit the hardw...

متن کامل

Moore's Law and Ultra-Low-Power Processors

Welcome to the November/December 2017 special issue on ultra-low-power processors. The Internet of Things (IoT) revolution is happening at a rapid pace. Most projections forecast that the number of connected IoT devices will grow exponentially, easily reaching over 100 billion within the next decade. This revolution leads to a vigorous demand for ultra-low-power (ULP) edge computing devices and...

متن کامل

Adiabatic superconducting cells for ultra-low-power artificial neural networks

We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

سال: 2019

ISSN: 1364-503X,1471-2962

DOI: 10.1098/rsta.2019.0155