P<sup>3</sup>-LOAM: PPP/LiDAR Loosely Coupled SLAM With Accurate Covariance Estimation and Robust RAIM in Urban Canyon Environment

نویسندگان

چکیده

Light Detection and Ranging (LiDAR) based Simultaneous Localization Mapping (SLAM) has drawn increasing interests in autonomous driving. However, LiDAR-SLAM suffers from accumulating errors which can be significantly mitigated by Global Navigation Satellite System (GNSS). Precise Point Positioning (PPP), an accurate GNSS operation mode independent of base stations, gains growing popularity unmanned systems. Considering the features two technologies, PPP, this paper proposes a SLAM system, namely P 3 -LOAM (PPP LiDAR Odometry Mapping) couples PPP. For better integration, we derive positioning covariance using Singular Value Decomposition (SVD) Jacobian model, since SVD provides explicit analytic solution Iterative Closest (ICP), is key issue LiDAR-SLAM. A novel method then proposed to evaluate estimated covariance. In addition, increase reliability urban canyon environment, develop assisted Receiver Autonomous Integrity Monitoring (RAIM) algorithm. Finally, validate with UrbanNav, challenging public dataset environment. Comprehensive test results prove that, terms accuracy availability, outperforms benchmarks such as Single (SPP), LeGO-LOAM, SPP-LOAM, loosely coupled navigation system publisher UrbanNav.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Landmark Estimation for SLAM in Dynamic Outdoor Environment

In this paper, we propose techniques which make SLAM accurate and practical in dynamic outdoor environment. In order to achieve the objective, stable feature detection by a laser range finder and efficient data management are introduced. The stable feature detection is used to select static and characteristic landmarks, it is possible to estimate every position of landmark accurately in the dyn...

متن کامل

Robust Linear Estimation with Covariance Uncertainties

We consider the problem of estimating a random vector x, with covariance uncertainties, that is observed through a known linear transformation H and corrupted by additive noise. We first develop the linear estimator that minimizes the worst-case meansquared error (MSE) across all possible covariance matrices. Although the minimax approach has enjoyed widespread use in the design of robust metho...

متن کامل

Distributing A B+-Tree in a Loosely Coupled Environment

We consider the problem of maintaining a data file which must be distributed among disks, each controlled by a processor and residing in a different site. The pairs, of disks and processors, are connected via a local broadcast network. A simple and practical method for maintaining such a file is presented and analyzed.

متن کامل

On Accurate and Robust Estimation

This paper is concerned with the accurate and robust estimation of the fundamental matrix. We show that, given a certain conditions, a basic linear algorithm can yield excellent accuracy, in cases two orders of magnitude better than sophisticated algorithms. The key element of the success is the accuracy and the statistical distribution of the errors of displacement estimates used as input. We ...

متن کامل

qfd planning with cost consideration in fuzzy environment

در عصر حاضر که رقابت بین سازمان ها بسیار گسترش یافته است، مطالعه و طرحریزی سیستم های تولیدی و خدماتی به منظور بهینه سازی عملکرد آنها اجتناب ناپذیر می باشد. بخش عمده ای از رقابت پذیری سازمان ها نتیجه رضایتمندی مشتریان آنها است. میزان موفقیت سازمان های امروزی به تلاش آنها در جهت شناسایی خواسته ها و نیازهای مشتریان و ارضای این نیازها بستگی دارد. از طرفی کوتاه کردن زمان ارائه محصول/خدمات به مشتریان...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Sensors Journal

سال: 2021

ISSN: ['1558-1748', '1530-437X']

DOI: https://doi.org/10.1109/jsen.2020.3042968