Pseudosphere Arrangements with Simple Complements

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Borsuk-Ulam Theorems for Complements of Arrangements

In combinatorial problems it is sometimes possible to define a G-equivariant mapping from a space X of configurations of a system to a Euclidean space Rm for which a coincidence of the image of this mapping with an arrangement A of linear subspaces insures a desired set of linear conditions on a configuration. BorsukUlam type theorems give conditions under which no G-equivariant mapping of X to...

متن کامل

Topology of Plane Arrangements and Their Complements

This is a glossary of notions and methods related with the topological theory of collections of affine planes, including braid groups, configuration spaces, order complexes, stratified Morse theory, simplicial resolutions, complexes of graphs, Orlik– Solomon rings, Salvetti complex, matroids, Spanier–Whitehead duality, twisted homology groups, monodromy theory and multidimensional hypergeometri...

متن کامل

Formality of the Complements of Subspace Arrangements with Geometric Lattices

We show that, for an arrangement of subspaces in a complex vector space with geometric intersection lattice, the complement of the arrangement is formal. We prove that the Morgan rational model for such an arrangement complement is formal as a differential graded algebra.

متن کامل

On the Complements of Affine Subspace Arrangements

Let V be an l−dimensional real vector space. A subspace arrangement A is a finite collection of affine subspaces in V . There is no assumption on the dimension of the elements of A. Let M(A) = V −∪A∈AA be the complement of A. A method of calculating the additive structure of H(M(A)) was given in [G-MP] using stratified Morse theory, proving that H(M(A)) depends only on the set of all intersecti...

متن کامل

Some cyclic covers of complements of arrangements

Motivated by the Milnor fiber of a central arrangement, we study the cohomology of a family of cyclic covers of the complement of an arbitrary arrangement. We give an explicit proof of the polynomial periodicity of the Betti numbers of the members of this family of cyclic covers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2003

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181075475