Pseudoelasticity and ageing in shape memory alloys.
نویسندگان
چکیده
منابع مشابه
Shape memory and pseudoelasticity in metal nanowires.
Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking f...
متن کاملAtomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars
Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a h110i – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase tr...
متن کاملApplication of Shape Memory Alloys in Seismic Isolation: A Review
In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re...
متن کاملShape Memory Alloys
THE TERM SHAPE MEMORY ALLOYS (SMA) is applied to that group of metallic materials that demonstrate the ability to return to some previously defined shape or size when subjected to the appropriate thermal procedure. Generally, these materials can be plastically deformed at some relatively low temperature, and upon exposure to some higher temperature will return to their shape prior to the deform...
متن کاملA 3d Micro-Plane Model for Shape Memory Alloys
are compared with the experimental results. In these test results the shape memory alloys behavior as: super elasticity under various temperatures, loading rate effects, asymmetry in tension and pressure, various loops of loading and unloading, hydrostatic pressure effects, different proportional tension-shear biaxial loading and unloading, and also deviation from normality due to non-proportio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Society of Materials Science, Japan
سال: 1988
ISSN: 1880-7488,0514-5163
DOI: 10.2472/jsms.37.735