Pseudo-empirical likelihood estimation using nonparametric regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Bayes Estimation in Wavelet Nonparametric Regression

Bayesian methods based on hierarchical mixture models have demonstrated excellent mean squared error properties in constructing data dependent shrinkage estimators in wavelets, however, subjective elicitation of the hyperparameters is challenging. In this chapter we use an Empirical Bayes approach to estimate the hyperparameters for each level of the wavelet decomposition, bypassing the usual d...

متن کامل

Nonparametric regression estimation using penalized least squares

We present multivariate penalized least squares regression estimates. We use Vapnik{ Chervonenkis theory and bounds on the covering numbers to analyze convergence of the estimates. We show strong consistency of the truncated versions of the estimates without any conditions on the underlying distribution.

متن کامل

Change Point Estimation Using Nonparametric Regression

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

Empirical likelihood estimation of the spatial quantile regression

The spatial quantile regression model is a useful and flexible model for analysis of empirical problems with spatial dimension. This paper introduces an alternative estimator for this model. The properties of the proposed estimator are discussed in a comparative perspective with regard to the other available estimators. Simulation evidence on the small sample properties of the proposed estimato...

متن کامل

Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation

When covariates are measured with error, inference based on conventional generalized linear models can yield biased estimatesof regressionparameters. This problem can potentiallybe rectiŽed byusing generalizedlinear latent and mixedmodels (GLLAMM), including a measurementmodel for the relationship between observed and true covariates. However, the models are typically estimated under the assump...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2009

ISSN: 0893-9659

DOI: 10.1016/j.aml.2009.01.024