Pseudo-Carleson measures for weighted Bergman spaces.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carleson Measures and Balayage for Bergman Spaces of Strongly Pseudoconvex Domains

Given a bounded strongly pseudoconvex domain D in C with smooth boundary, we characterize (p, q, α)-Bergman Carleson measures for 0 < p < ∞, 0 < q < ∞, and α > −1. As an application, we show that the Bergman space version of the balayage of a Bergman Carleson measure on D belongs to BMO in the Kobayashi metric.

متن کامل

A Carleson-type Condition for Interpolation in Bergman Spaces

An analogue of the notion of uniformly separated sequences, expressed in terms of canonical divisors, is shown to yield a necessary and sufficient condition for interpolation in the Bergman space Ap, 0 < p < ∞. A sequence Γ = {zj} of distinct points in the open unit disk D = {z : |z| < 1} of the complex plane is a classical interpolation sequence if for every bounded sequence {aj}, there is a b...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Operators on weighted Bergman spaces

Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...

متن کامل

Removable singularities for weighted Bergman spaces

We develop a theory of removable singularities for the weighted Bergman space Aμ(Ω) = {f analytic in Ω : R Ω |f | dμ < ∞}, where μ is a Radon measure on C. The set A is weakly removable for Aμ(Ω \ A) if Aμ(Ω \ A) ⊂ Hol(Ω), and strongly removable for Aμ(Ω \A) if Aμ(Ω \A) = Aμ(Ω). The general theory developed is in many ways similar to the theory of removable singularities for Hardy H spaces, BMO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2000

ISSN: 0026-2285

DOI: 10.1307/mmj/1030132588