Pruned Discrete Random Samples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pruned Discrete Random Samples

Let Xi, i ∈ N, be independent and identically distributed random variables with values in N0. We transform (‘prune’) the sequence {X1, . . . , Xn}, n ∈ N, of discrete random samples into a sequence {0, 1, 2, . . . , Yn}, n ∈ N, of contiguous random sets by replacing Xn+1 with Yn + 1 if Xn+1 > Yn. We consider the asymptotic behaviour of Yn as n → ∞. Applications include path growth in digital se...

متن کامل

Gaps in Discrete Random Samples

Let (Xi)i∈N be a sequence of independent and identically distributed random variables with values in the set N0 of non-negative integers. Motivated by applications in enumerative combinatorics and analysis of algorithms we investigate the number of gaps and the length of the longest gap in the set {X1, . . . , Xn} of the first n values. We obtain necessary and sufficient conditions in terms of ...

متن کامل

Gaps in discrete random samples: extended abstract

Motivated by applications in enumerative combinatorics and the analysis of algorithms we investigate the number of gaps and the length of the longest gap in a discrete random sample from a general distribution. We obtain necessary and sufficient conditions on the underlying distribution for the gaps to vanish asymptotically (with probability 1, or in probability), and we study the limiting dist...

متن کامل

On matrix factorizations for recursive pruned discrete cosine transforms

This paper presents two matrix factorizations for recursive pruned discrete cosine transforms. Both factorizations have lower computational complexity when compared to the method of El-Sharkawy and Eshmawy (1995). ( 1998 Elsevier Science B.V. All rights reserved.

متن کامل

Pruned Random Subspace Method for One-Class Classifiers

The goal of one-class classification is to distinguish the target class from all the other classes using only training data from the target class. Because it is difficult for a single one-class classifier to capture all the characteristics of the target class, combining several one-class classifiers may be required. Previous research has shown that the Random Subspace Method (RSM), in which cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 2013

ISSN: 0021-9002,1475-6072

DOI: 10.1017/s0021900200013553