Proximal Markov chain Monte Carlo algorithms
نویسندگان
چکیده
منابع مشابه
On Adaptive Markov Chain Monte Carlo Algorithms
Abstract We look at adaptive MCMC algorithms that generate stochastic processes based on sequences of transition kernels, where each transition kernel is allowed to depend on the past of the process. We show under certain conditions that the generated stochastic process is ergodic, with appropriate stationary distribution. We then consider the Random Walk Metropolis (RWM) algorithm with normal ...
متن کاملSpeeeding Up Markov Chain Monte Carlo Algorithms
We prove an upper bound on the convergence rate of Markov Chain Monte Carlo (MCMC) algorithms for the important special case when the state space can be aggregated into a smaller space, such that the aggregated chain approximately preserves the Markov property.
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملMarkov Chain Monte Carlo
This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with the basic theory of Markov chains and build up to a theorem that characterizes convergent chains. We then discuss the MetropolisHastings algorithm.
متن کاملMarkov chain Monte Carlo
One of the simplest and most powerful practical uses of the ergodic theory of Markov chains is in Markov chain Monte Carlo (MCMC). Suppose we wish to simulate from a probability density π (which will be called the target density) but that direct simulation is either impossible or practically infeasible (possibly due to the high dimensionality of π). This generic problem occurs in diverse scient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2015
ISSN: 0960-3174,1573-1375
DOI: 10.1007/s11222-015-9567-4