Proof Theory of Riesz Spaces and Modal Riesz Spaces

نویسندگان

چکیده

We design hypersequent calculus proof systems for the theories of Riesz spaces and modal prove key theorems: soundness, completeness cut elimination. These are then used to obtain completely syntactic proofs some interesting results concerning two theories. Most notably, we a novel result: theory is decidable. This work has applications in field logics probabilistic programs since provide algebraic semantics logic underlying mu-calculus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointfree Spectra of Riesz Spaces

One of the best ways of studying ordered algebraic structures is through their spectra. The three well-known spectra usually considered are the Brumfiel, Keimel, and the maximal spectra. The pointfree versions of these spectra were studied by B. Banaschewski for f -rings. Here, we give the pointfree versions of the Keimel and the maximal spectra for Riesz spaces. Moreover, we briefly mention ho...

متن کامل

Integral and ideals in Riesz spaces

A convergence in Riesz spaces is given axiomatically. A Bochner-type integral for Riesz space-valued functions is introduced and some Vitali and Lebesgue dominated convergence theorems are proved. Some properties and examples are investigated. A.M.S. SUBJECT CLASSIFICATION (2000): 28B15.

متن کامل

Riesz Theorems in 2-inner Product Spaces

In this paper we describe the proof of ’Riesz Theorems’ in 2inner product spaces. The main result holds only for a b-linear functional but not for a bilinear functional. AMS Mathematics Subject Classification (2010): 41A65, 41A15

متن کامل

Compact operators on Banach spaces: Fredholm-Riesz

1. Compact operators on Banach spaces 2. Appendix: total boundedness and Arzela-Ascoli [Fredholm 1900/1903] treated compact operators as limiting cases of finite-rank operators. [1] [Riesz 1917] defined and made direct use of the compactness condition, more apt for Banach spaces. See [Riesz-Nagy 1952] for extensive discussion in the Hilbert-space situation, and many references to original paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Logical Methods in Computer Science

سال: 2022

ISSN: ['1860-5974']

DOI: https://doi.org/10.46298/lmcs-18(1:32)2022