Proof of a conjecture of Heath-Brown concerning quadratic residues
نویسندگان
چکیده
منابع مشابه
A Simple Proof of Fiedler's Conjecture Concerning Orthogonal Matrices
We give a simple proof that an n×n orthogonal matrix with n ≥ 2 which cannot be written as a direct sum has at least 4n− 4 nonzero entries. 1. The result. What is the least number of nonzero entries in a real orthogonal matrix of order n? Since the identity matrix In is orthogonal the answer is clearly n. A more interesting question is: what is the least number of nonzero entries in a real orth...
متن کاملOn Consecutive Quadratic Non-residues: a Conjecture of Issai Schur
Issai Schur once asked if it was possible to determine a bound, preferably using elementary methods, such that for all prime numbers p greater than the bound, the greatest possible number of consecutive quadratic non-residues modulo p is always less than p. (One can find a brief discussion of this problem in R. K. Guy’s book [5]). Schur also pointed out that the greatest number of consecutive q...
متن کاملOn Lam's Conjecture concerning Signatures of Quadratic Forms
In this paper, we prove that formally real elds satisfying some explicit conditions on the v-invariant verify a Lam's conjecture concerning signatures of quadratic forms. In particular, it gives a short proof of a Marshall's conjecture for Pythagorean elds.
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1996
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500023324