Projective well-orderings and extensions of Lebesgue measure
نویسندگان
چکیده
منابع مشابه
Lebesgue Measure
How do we measure the ”size” of a set in IR? Let’s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its length, which is used frequently in differentiation and integration. For any bounded interval I (open, closed, half-open) with endpoints a and b (a ≤ b), the length of I is defined by `(I) = b − a. Of course, the length of any unbounded...
متن کاملRandomness – beyond Lebesgue Measure
Much of the recent research on algorithmic randomness has focused on randomness for Lebesgue measure. While, from a computability theoretic point of view, the picture remains unchanged if one passes to arbitrary computable measures, interesting phenomena occur if one studies the the set of reals which are random for an arbitrary (continuous) probability measure or a generalized Hausdorff measur...
متن کاملextensions, minimality and idempotents of certain semigroup compactifications
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
15 صفحه اولProjective extensions of fields
A field K admits proper projective extensions, i.e. Galois extensions where the Galois group is a nontrivial projective group, unless K is separably closed or K is a pythagorean formally real field without cyclic extensions of odd degree. As a consequence, it turns out that almost all absolute Galois groups decompose as proper semidirect products. We show that each local field has a unique maxi...
متن کاملWell-foundedness of Term Orderings
Well-foundedness is the essential property of orderings for proving termination. We introduce a simple criterion on term orderings such that any term ordering possessing the subterm property and satisfying this criterion is well-founded. The usual path orders fulfil this criterion, yielding a much simpler proof of well-foundedness than the classical proof depending on Kruskal's theorem. Even mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1982
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-46-2-185-188