Projective Covers of Flat Contramodules

نویسندگان

چکیده

Abstract We show that a direct limit of projective contramodules (over right linear topological ring) is if it has cover. A similar result obtained for $\infty $-strictly flat dimension not exceeding $1$, using an argument based on the notion Jacobson radical. Covers and precovers limits more general classes objects, both in abelian categories with exact nonexact limits, are also discussed, eye towards Enochs conjecture about covers locally split (mono)morphisms as main technique. In particular, we offer simple elementary proof left class $n$-tilting cotorsion pair category limits.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-FLAT PROJECTIVE FUZZY QUANTALES

In this paper, we introduce the notion of {bf K}-flat projective fuzzy quantales, and give an elementary characterization in terms of a fuzzy binary relation on the fuzzy quantale. Moreover, we  prove that {bf K}-flat projective fuzzy quantales are precisely the coalgebras for a certain comonad on the category of fuzzy quantales. Finally, we present two special cases of {bf K} as examples.

متن کامل

Quasi-projective covers of right $S$-acts

In this paper $S$ is a monoid with a left zero and $A_S$ (or $A$) is a unitary right $S$-act. It is shown that a monoid $S$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $S$-act is quasi-projective. Also it is shown that if every right $S$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...

متن کامل

A generalization of projective covers

Let M be a left module over a ring R and I an ideal of R. We call (P,f ) a projective I -cover of M if f is an epimorphism from P to M , P is projective, Kerf ⊆ IP , and whenever P = Kerf + X, then there exists a summand Y of P in Kerf such that P = Y +X. This definition generalizes projective covers and projective δ-covers. Similar to semiregular and semiperfect rings, we characterize I -semir...

متن کامل

quasi-projective covers of right $s$-acts

in this paper $s$ is a monoid with a left zero and $a_s$ (or $a$) is a unitary right $s$-act. it is shown that a monoid $s$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $s$-act is quasi-projective. also it is shown that if every right $s$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...

متن کامل

Brown Representability and Flat Covers

We exhibit a surprising connection between the following two concepts: Brown representability which arises in stable homotopy theory, and flat covers which arise in module theory. It is shown that Brown representability holds for a compactly generated triangulated category if and only if for every additive functor from the category of compact objects into the category of abelian groups a flat c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2021

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnab202