Projection methods for nonlinear nodal problems
نویسندگان
چکیده
منابع مشابه
Projection Methods for Nonlinear Sparse Eigenvalue Problems
This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.
متن کاملIterative Projection Methods for Large–scale Nonlinear Eigenvalue Problems
In this presentation we review iterative projection methods for sparse nonlinear eigenvalue problems which have proven to be very efficient. Here the eigenvalue problem is projected to a subspace V of small dimension which yields approximate eigenpairs. If an error tolerance is not met then the search space V is expanded in an iterative way with the aim that some of the eigenvalues of the reduc...
متن کاملVariable projection for nonlinear least squares problems
The variable projection algorithm of Golub and Pereyra (1973) has proven to be quite valuable in the solution of nonlinear least squares problems in which a substantial number of the parameters are linear. Its advantages are efficiency and, more importantly, a better likelihood of finding a global minimizer rather than a local one. The purpose of our work is to provide a more robust implementat...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Projection Methods for Oversized Linear Algebra Problems Projection Methods for Over
Everybody who has some experience in doing mathematics knows, that dimensional reduction and projection are useful tools to confront problems that are too complicated to solve without any simplification. Who hasn’t, occasionally, but notwithstanding timidly, suggested that perhaps it would be a good idea to study the simple one-dimensional casefirst before trying tounderstand the real-world thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1977
ISSN: 0035-7596
DOI: 10.1216/rmj-1977-7-3-569