Prohorov-Type Local Limit Theorems on Abstract Wiener Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paley-wiener-type Theorems

The Fourier transforms of functions with compact and convex supports in R are described. The Fourier transforms of functions with nonconvex and unbounded supports are also considered.

متن کامل

Almost sure central limit theorems on the Wiener space

In this paper, we study almost sure central limit theorems for sequences of functionals of general Gaussian elds. We apply our result to non-linear functions of stationary Gaussian sequences. We obtain almost sure central limit theorems for these non-linear functions when they converge in law to a normal distribution.

متن کامل

Quantitative stable limit theorems on the Wiener space

We use Malliavin operators in order to prove quantitative stable limit theorems on the Wiener space, where the target distribution is given by a possibly multidimensional mixture of Gaussian distributions. Our findings refine and generalize previous works by Nourdin and Nualart [J. Theoret. Probab. 23 (2010) 39–64] and Harnett and Nualart [Stochastic Process. Appl. 122 (2012) 3460–3505], and pr...

متن کامل

Abstract Korovkin-type theorems in modular spaces and applications

Korovkin-type theorems in modular spaces and applications C. Bardaro ∗ A. Boccuto † X. Dimitriou ‡ I. Mantellini § Abstract We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results even with respect to an axiomatic convergence, whose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2018

ISSN: 1660-5446,1660-5454

DOI: 10.1007/s00009-018-1093-0