Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probability Density Estimation via Infinite Gaussian Mixture Model: Application to Statistical Process Monitoring

The primary goal of multivariate statistical process performance monitoring is to identify deviations from normal operation within a manufacturing process. The basis of the monitoring schemes is historical data that has been collected when the process is running under normal operating conditions. This data is then used to establish confidence bounds to detect the onset of process deviations. In...

متن کامل

The Infinite Gaussian Mixture Model

In a Bayesian mixture model it is not necessary a priori to limit the number of components to be finite. In this paper an infinite Gaussian mixture model is presented which neatly sidesteps the difficult problem of finding the “right” number of mixture components. Inference in the model is done using an efficient parameter-free Markov Chain that relies entirely on Gibbs sampling.

متن کامل

An Alternative Infinite Mixture Of Gaussian Process Experts

We present an infinite mixture model in which each component comprises a multivariate Gaussian distribution over an input space, and a Gaussian Process model over an output space. Our model is neatly able to deal with non-stationary covariance functions, discontinuities, multimodality and overlapping output signals. The work is similar to that by Rasmussen and Ghahramani [1]; however, we use a ...

متن کامل

Gaussian Mixture Model estimation

One of the keystones of the canceled BTeV experiment (proposed at Fermilab’s Tevatron) was its sophisticated threelevel trigger. The trigger was designed to reject 99.9% of lightquark background events and retain a large number of B decays. The BTeV Pixel Detector provided a 3-dimensional, high resolution tracking system to detect B signatures. The Level 1 pixel detector trigger was proposed as...

متن کامل

Clustering gene expression time series data using an infinite Gaussian process mixture model

Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Royal Statistical Society: Series C (Applied Statistics)

سال: 2006

ISSN: 0035-9254,1467-9876

DOI: 10.1111/j.1467-9876.2006.00560.x