Probabilistic forecasting of heterogeneous consumer transaction–sales time series
نویسندگان
چکیده
منابع مشابه
Stacked Heterogeneous Neural Networks for Time Series Forecasting
A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with an exponential activation function in the output layer. As shown by the case studies, the proposed stacked hybrid neural model performs well on a variety of benchmark time series. The combination of weig...
متن کاملimproving the hybrid anns/arima models with probabilistic neural networks (pnns) for time series forecasting
time series forecasting is an active research area that has drawn considerable attention for applications in a variety of areas. forecasting accuracy is one of the most important features of forecasting models. nowadays, despite the numerous time series forecasting models which have been proposed in several past decades, it is widely recognized that financial markets are extremely difficult to ...
متن کاملTime-series Scenario Forecasting
Many applications require the ability to judge uncertainty of time-series forecasts. Uncertainty is often specified as point-wise error bars around a mean or median forecast. Due to temporal dependencies, such a method obscures some information. We would ideally have a way to query the posterior probability of the entire time-series given the predictive variables, or at a minimum, be able to dr...
متن کاملForecasting Seasonal Time Series∗
This chapter deals with seasonal time series in economics and it reviews models that can be used to forecast out-of-sample data. Some of the key properties of seasonal time series are reviewed, and various empirical examples are given for illustration. The potential limitations to seasonal adjustment are reviewed. The chapter further addresses a few basic models like the deterministic seasonali...
متن کاملForecasting Analogous Time Series
Organizations that use time series forecasting on a regular basis generally forecast many variables, such as demand for many products or services. Within the population of variables forecasted by an organization, we can expect that there will be groups of analogous time series that follow similar, time-based patterns. The co-variation of analogous time series is a largely untapped source of inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Forecasting
سال: 2020
ISSN: 0169-2070
DOI: 10.1016/j.ijforecast.2019.07.007