Priors on exchangeable directed graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Priors on exchangeable directed graphs

Directed graphs occur throughout statistical modeling of networks, and exchangeability is a natural assumption when the ordering of vertices does not matter. There is a deep structural theory for exchangeable undirected graphs, which extends to the directed case via measurable objects known as digraphons. Using digraphons, we first show how to construct models for exchangeable directed graphs, ...

متن کامل

Random function priors for exchangeable arrays with applications to graphs and relational data

A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Ald...

متن کامل

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

Exchangeable Markov Processes on Graphs: Feller Case

The transition law of every exchangeable Feller process on the space of countable graphs is determined by a σ-finite measure on the space of {0, 1} × {0, 1}-valued arrays. In discrete-time, this characterization amounts to a construction from an independent, identically distributed sequence of exchangeable random functions. In continuous-time, the behavior is enriched by a Lévy–Itô-type decompo...

متن کامل

Edge-exchangeable graphs and sparsity

A known failing of many popular random graph models is that the Aldous–Hoover Theorem guarantees these graphs are dense with probability one; that is, the number of edges grows quadratically with the number of nodes. This behavior is considered unrealistic in observed graphs. We define a notion of edge exchangeability for random graphs in contrast to the established notion of infinite exchangea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2016

ISSN: 1935-7524

DOI: 10.1214/16-ejs1185