Principal minors Pfaffian half-tree theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on the Pfaffian Matrix-Tree Theorem

SCOTT HIRSCHMAN AND VICTOR REINER Kir ho 's elebrated Matrix-Tree Theorem gives a determinant ounting spanning trees in a graph. It has at least three di erent well-known proofs: one via the Binet-Cau hy Theorem (see e.g. [5, x2.2℄), one via a deletionontra tion indu tion (see e.g. [2, x13.2℄), and one due to Chaiken [1℄ via a sign-reversing involution. Re ently Masbaum and Vaintrob [3℄ proved ...

متن کامل

Motzkin Number Pfaffian (theorem 2)

Evaluate the Pfaffian Pfa i, j 1i, j2 n where ai, j j i Mi j 3 with Mn denoting the Motzkin numbers: Mn k0 n 1 k1 n 2 k 2 k k. The evaluation of this Pfaffian was conjectured in the paper "Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants'' Now we guess an implicit description (linear recurrences) for the auxiliary function c 2 n,i. We set the option AdditionalEqua...

متن کامل

Packing Topological Minors Half-Integrally

A family F of graphs has the Erdős-Pósa property if for every graph G, the maximum number of pairwise disjoint subgraphs isomorphic to members of F contained in G and the minimum size of a set of vertices of G hitting all such subgraphs are bounded by functions of each other. Robertson and Seymour proved that if F consists of H-minors for some fixed graph H, then the planarity of H is equivalen...

متن کامل

Principal minors and rhombus tilings

The algebraic relations between the principal minors of an n× n matrix are somewhat mysterious, see e.g. [LS09]. We show, however, that by adding in certain almost principal minors, the relations are generated by a single relation, the so-called hexahedron relation, which is a composition of six cluster mutations. We give in particular a Laurent-polynomial parameterization of the space of n× n ...

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2014

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2013.12.002